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ON THE COMPUTATION OF UNIT GROUPS AND 
CLASS GROUPS OF TOTALLY COMPLEX QUARTIC FIELDS 

M. POHST AND J. GRAF V. SCHMETTOW 

ABSTRACT. We describe the computation of the unit group and the class group 
of the 81322 totally complex quartic fields with discriminant less than one mil- 
lion. 45.6% of those fields have trivial class groups; the maximal class number 
occurring is 70. 

1. INTRODUCTION 

In [3] we presented computations of the unit group and the class group of all 
13073 totally real quartic fields with discriminant below 106. In this paper we 
do the analogous calculations in the totally complex case. Generating equations, 
integral bases as well as Galois groups ' were again obtained from D. Ford [6]. 
Since the unit rank is one, the computation of the unit group was much easier 
this time; on the other hand, the class groups were in general more complicated. 

2. UNIT GROUPS 

The structure of the unit group of a totally complex quartic number field is 

(4) x (80), 
where 4 denotes a generator of the torsion subgroup TU(F) and c0 a funda- 
mental unit. The regulator 21 log colI is denoted by RF . The (cyclic) torsion 
subgroup was computed by the methods described in [8]. Its order w is at most 
12. In detail we found 

w=2 w=4 w=6 w=8 w=10 w=12 
#offields 59964 8212 13143 1 1 1 

It can be easily seen that there is no quartic number field with more than 
twelve roots of unity and that there is exactly one field for w = 8, 10, 12 [8]. 
These fields are defined by roots of the following polynomials: 

w = 8: t4+1 ( = V4 , dF = 256 , RF 1.763) 

w = 10: t4 -t3 + t2 _ t + ( =C4 , dF = 125 , RF 0.9624) 

w = 12: t4 -t2 + 1 (=V4, dF = 144, RF 1.317). 
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A fundamental unit c0 was determined with an algorithm of J. Buchmann 
[1]. We give below a short description of the essential ideas. Let F = Q(p) 
be a complex quartic field with ring of integers OF = 201 + *-- + 204 and 
discriminant dF. For each element a E F there are four conjugates, say 
aM =a a a(2) and the corresponding complex conjugates a (3) = (l), a(4) 

a(2) . For any fractional ideal a the image ~o(a) under the mapping 

q': a - R2 a , (Ia('1)12 Ia(2I2) 

is a discrete subset of Euclidean 2-space. An element 0 $ ,u E a is called 
minimal if the corresponding norm body 

Q(u) := {(x , x2) E R210 < xi < 1u(i)12 (i = 1, 2)} 

does not contain p(a) for any a E a different from 0 and ,u modulo the 
torsion subgroup TU(F) . It is easily seen that minimal elements ,u of a have 
bounded norm [1]: 

IN(8) I < (4/7r2)d /2 N(a). 

Let {i, j} = {1, 2} be a pair of conjugate directions. An element v is called 
i-neighbor of a minimal element ,u E a if it is minimal subject to I (v) I < 1u(1)I 
and Iv(i)J as small as possible. Note that v is uniquely determined modulo 
TU(F) by these properties. 

Obviously, 1 is minimal in OF. Hence, starting with Ju0 = 1, we obtain 
a sequence of all minimal elements (Uk)kEZ of OF in which /k+I is the 2- 
neighbor of 1k and, conversely, 1k is the 1-neighbor of /k+1 . That sequence 
is purely periodic, and if p > 0 is chosen minimal such that ,up is a unit, 
then ,up is a fundamental unit of F. From this an algorithm for computing a 
fundamental unit is almost immediate. We only add a few remarks about the 
calculation of i-neighbors. In general, one proceeds by doubling the range for 
the i th conjugate and determining all elements in the corresponding norm body. 
If no element is obtained, that range will be increased again. On the other hand, 
each time we find a candidate ,u for the next i th neighbor, the conjugates of 
,u decrease the bounds for potential further candidates. Since counting lattice 
points in boxes is in general not very efficient, it is recommended to cover any 
norm body by a suitable ellipsoid whose lattice points can be determined faster 
(see [1, 5]). 

Since we cannot present all fundamental units, we conclude this section with 
a few remarks on the size of the regulators that occur. They vary between 0.337 
(discriminant dF = 229) and 570.2 (dF = 965361). With respect to the Galois 
group of the field we get the following distribution: 

_____ _11 C4 [ D4 I S4 I A4 ] V4 11 #-I 
5# 1 536238 1441221 90 81811 81322 l 

?<RF<1 23 1818 4 0 52 1897 
1 <RF <5 29 3456 2348 17 274 6124 

5<RF<10 2 5302 4534 28 262 10128 
10 < RF < 20 0 6728 7774 21 171 14694 
20 < RF < 50 0 10500 14149 21 59 ; 24729 

50 <-RF I 0 8434 15313 3 0 J 23750 
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| _ _ _ _ _ _ C4 J D4 [ S4 J A4 ] V4 || _ ] 
frequency 0.07% | 44.56% [54.26% J 0.11% 1.01% || frequency] 

0 < RF < 1 42.59% 5.02% 0.01% 0.00% 6.36% 2.33% 
1 < RF < 5 53.70% 9.54% 5.32% 18.89% 33.50% 7.53% 

5 < RF < 10 3.70% 14.63% 10.28% 31.11% 32.03% 12.45% 
10 < RF < 20 0.00% 18.57% 17.62% 23.33% 20.90% 18.07% 
20 < RF < 50 0.00% 28.98% 32.07% 23.33% 7.21% 30.41% 

r7 __50 < RF . 0.00% 23.27% - 34.71% 3.33% 0.00% 29.20% 

3. CLASS GROUPS 

The computation of the class groups had definitely more interesting results 
than in the totally real case. While in the real case over 90% of the class groups 
turned out to be trivial and the maximal class number was only six, we now 
found class numbers up to 70. Moreover, more than half of the class groups 
(54.4%) were nontrivial. 

The algorithm for computing the class groups was already presented in [3]; see 
[7, 8] for greater details. Hence, we give only a short summary of the method. 
For each field we begin by computing a superset of generators of the class group. 
According to a theorem of Zimmert [11] there exists an integral ideal in every 
ideal class whose norm is bounded by V/-/6.792 < 103/6.792 < 148. 

For a particular field it is hence sufficient to compute all prime ideals 
Pi, ... , P, lying over primes p subject to p < 139. With the help of methods 
from the geometry of numbers, we then determine sufficiently many relations 
between those prime ideals [3, 10]. The relations are listed in a so-called class 
group matrix: 

(1) CGM :=(ci,j) E Z (w E >0) 

where 
v 

(2) Vj E {1, ..,w}: p' is a principal ideal. 
i=l1 

Condition (2) is invariant under elementary column operations of CGM. Hence, 
we compute the lower Hermite normal form of (1) (see [8]). If the resulting 
matrix is singular, we need more relations, which can be obtained by fast deter- 
ministic methods [ 10]. If the matrix is nonsingular, its determinant is a multiple 
of the class number; i.e., if the determinant is one we have already proved that 
hF = 1 - Otherwise, we can delete all rows and columns with diagonal entry 1 
without any information being lost. We call the resulting matrix reduced class 
group matrix. In none of the cases did the rank of the resulting matrix exceed 
five. 

The task of the last step is to derive the class group structure explicitly. The 
method used is explained for the general case in [7, 8, 2]. We illustrate the 
procedure by an example. 

Let F := Q(p) , where p4+65p2+995 = 0 . The field discriminant is 398000, 
an integral basis is given by 1, p, (1 + p2)/7, (p + p3)/7 and the regulator is 
RF 0.9624. Although Zimmert's bound is 92, we choose 150 as norm bound 
for the ideals to be taken under consideration. This is to make the calculation of 
relations more efficient [10]. We obtain 48 prime ideals over primes below 150. 
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After detecting about 80 relations (by the methods of [3]) we get the following 
reduced class group matrix: 

2 0 0 0 0 
0 2 0 0 0 

(3) 1 1 2 0 0. 
2 0 1 2 0 

0 1 1 0 2 

Hence, only five prime ideals P1, .. ., p5 (with norms 71, 11, 49, 5, and 4) are 
left and five relations between these ideals: (i) p2fP3P4 E XF, (ii) p2p3p5 E 

(iii) p3p4p5 e XF, (iv) p2 E XF, (V) p2 E XF, where XF denotes the set of 
principal ideals of the maximal order OF of F. The class number divides 32. 

For deriving the exact class group structure we need an efficient principal 
ideal test. As in the totally real case we used the method of Fincke and Pohst 
[5]; however, for large regulators (i.e., RF > 50) the principal ideal test of 
Buchmann and Williams [4] turned out to be faster. 

In detail, we search for ideals a1, ... , a, which generate v (< 5) cyclic 
factors of the class group C1F such that 

C1F = (ai*F) x x (az,F) 

and 
ord(ai*F)I ord(ai+iA'F) (1 < i <iv). 

Clearly, the ai can be determined as power products of P1, ..., p5. Note that 
we obtain the ideals ai in reverse order at first. 

Starting with p5 and condition (v), we check whether p5 E Af . The result 
is negative. Hence, we set a, +- p5, C +- (aAiF) and go on with condition 
(iv) and p4 . We have to compute the least exponent m > 0 such that pWmAF E 
C. Since we know that p24 E AF, we must only check whether p4 E AF 
or p4al E F Both tests yield negative results. Therefore, we enlarge C 
by setting a2 p4 and C +- (aXF) x (a2XF). Condition (iii) is already 
optimal in the sense that P30 F E C is impossible. Immediately, we can apply 
the elementary divisor theorem to the lower right (3 x 3)-submatrix of CGM, 
which yields diag(l, 2, 4). Because of necessary row operations we have to 
modify the generators a1, a2 via the inverse of the transformation matrix and 
get a, +- (Pp3p4)-1, a2 p4, and C +- (aiAF) x (a2AF). The class group 
matrix itself becomes 

2 0 0 0 
0 2 0 0 
0 0 2 0 , 
<3 1 0 4 

yielding the conditions (i') pl.a3l e XF, (ii') p2al E XF 
Again, condition (ii') is optimal, i.e., pl ? C. An application of the ele- 

mentary divisor theorem to the lower right (3 x 3)-submatrix of the class group 
matrix yields as (reduced) class group matrix 

2 0 0 

0 2 0 
<6 0 8, 



UNIT GROUPS OF TOTALLY COMPLEX QUARTIC FIELDS 797 

with corresponding ideals a, +- (P2)-> and a2 +- P4. In the last step the 
principal ideal test pla 3 E F yields a positive result; i.e., we find a principal 
ideal generator of the ideal P1P2P4P5 which is equivalent to pla3. Finally, 
reordering the ideals ai, we obtain the result 

C1F = (alF) x (a2XF) 

with ideals 

a, = = 110F +(5 + P)OF, 

a2 = P2 = 50F + POF 

of order 2 and 8, respectively. 
We note that we had to carry out only four principal ideal tests. 
The following table describes the occurrence of noncyclic class groups in 

dependence on the Galois group structure: 

C4 D4 S4 A4 V4 zi 
26 3891 994 3 254 5168 

48.15% 10.74% 2.25% 3.33% 31.05% I 6.35% 

Before going into detail, we give a survey of the class number distribution: 

[ ______ ~ [C4 D4 S4 IA4 V4 | # I 
54 36238 44122 90 818 81322 

hF = 1 7 11841 25154 13 40 . 37055 
hF = 2 8 9353 8784 33 93 18271 
hF = 3 0 1775 2726 1 53 4555 
hF = 4 12 4769 2894 32 154 7861 

5 < hF < 10 8 4293 3249 7 245 7802 
10 < hF < 20 11 2902 1101 4 146 4164 

20 < hF 8 1305 214 0 87 1614 

|| C4 D4 I S4 [ A4 J V4 || frequency] 
frequency ]| 0.07% 144.56% 154.26% [ 0.11% J 1.01% JJ 100% 

hF 1 12.96% -32.68% 57.01% 14.44% 4.89% 45.57% 
hF = 2 14.81% 25.81% 19.91% 36.67% 11.37% 22.47% 
hF =3 0.00% - 4.90% 6.18% 1.11% 6.48% 5.60% 
hF = 4 22.22% 13.16% 6.56% 35.56% 18.83% jj 9.67% 

5 < hF < 10 l-14.81% 11.85% 7.36% 7.78% 29.95% 9.59% 
10 < hF < 20 20.37% - 8.01% 2.50% 4.44% 17.85% If 5.12% 

20 < hF 14.81% - 3.60% 1 0.49% 0.00% i10.64% 1.98% 

We conclude with a more detailed survey of the class group structures that 
occur. The following table shows the frequency of each class group and the 
corresponding minimal field discriminant (if less than 106). 



[hF CIF 11 C4 D4 S4 [ A4 V4 11 ? 
1 1 7 (125) 11841( 117) 25154 ( 229) 13 ( 3136) 40 144) 37055 
2 2 8( 8000) 9353 (1872) 8784( 2889) 33( 4225) 93 1521) 18271 
3 3 - _ 1775( 3897) 2726( 7249) 1 (876096) 53( 4761) 4555 
4 4 2 (256000) 2698 (8000) 2224 (11348) 29 (15376) 92( 9025) 5045 
4 2x2 10 (18000) 2071( 20800) 670 (40437) 3 (246016) 62( 24336) 2816 
5 5 _ _ 689 (12176) 991( 13396) - 40( 14161) 1720 
6 6 __ 1459( 20025) 805 ( 23297) 1(819025) 54( 24025) 2319 
7 7 340( 25205) 513 ( 26028) - 18( 45369) 871 
8 8 __X_- 770( 34704) 449 ( 37108) 6 (205209) 49( 38025) 1274 
8 2x2x2 5 (136125) 83 (187200) 3 (589392) - 12(112896) 103 
8 2x4 3 (210125) 723 (13500) 228 (109008) - 61( 17424) 1015 
9 9 _ _ 195( 36513) 253 ( 46453) - 5 (112225) 453 
9 3x3 _ 34 (127813) 7 (205609) - 6 (103041) 47 

10 10 7( 44217) 616( 48528) 263( 77648) 2 (494209) 16 (127449) 904 
11 11 . 165 ( 54025) 164( 67581) - 7 (251001) 336 
12 12 403( 67648) 137 (106956) - 17( 61504) 557 
12 2x6 - 376 (108225) 37 (226064) - 33 ( 76176) 446 
13 13 - 142( 64576) 100 (115708) - 5 (303601) 247 
14 14 - 311 ( 78912) 102 (118548) - 9 (126025) 422 
15 15 - 126 (83008) 68 (114460) - 10 ( 99856) 204 
16 16 _ 182 (104512) 53 (134036) 2 (529984) 7 (308025) 244 
16 2x2x4 4 (722000) 27 (342000) - - 5 (176400) 36 

EhF CIF C4 I D4 [ S4 |A4| V4 
__ 

16 2x8 _ 203 (124992) 27 (224568) - 25 (278784) 255 
16 4x4 32 (334080) 5 (534784) - 4(176400) 41 
17 17 _ 83 (120025) 54 (173164) - - 137 
18 18 . 158 (135025) 42 (183564) _ 1(919681) 201 
18 3x6 - 16 (223025) _ - 6(121104) 22 
19 19 - 62 (125137) 49 (173713) - 1(870489) 112 
20 20 2 (256000) 151 (180025) 31(294813) - 14 (141376) 198 
20 2xlO 4 (392000) 141 (155664) 6 (455749) 10 (184041) 161 
21 21 _ 45 (189025) 23 (155444) - 5(152881) 73 
22 22 __ 102 (196672) 24 (292517) - 126 
23 23 32 (231025) 18 (189816) = - 50 
24 24 88 (218176) 14 (331125) - 8(189225) 110 
24 2x2x6 11(383625) - - 1(853776) 12 

24 2x12 70 (235152) 3 (793517) - 6(336400) 79 
25 25 - 38 (264256) 8 (389620) - _ 46 
25 5x5 . 1(946525) - - 2(373321) 3 

26 26 77 (233536) 15 (340008) - 1(912025) 93 
27 27 - 26 (248896) 11(340741) - - 37 

27 3x9 _- - - 1(277729) 1 
28 28 - 46 (290448) 8(746684) - - 54 

28 2x14 . 39 (344025) 4(412812) - 3(725904) 46 
29 29 - 17 (298537) 5(464212) - - 22 

30 30 52 (279616) 3(545013) - 6(404496) 61 
31 31 - 18 (475025) 5(549361) - - 23 

32 32 . 36 (411408) 5(497268) - - 41 
32 2x2x8 _ 1(922625) _ - - 1 

32 2x16 . 22 (480528) 2(766125) - 6(439569) 30 
32 4x8 - 6(723600) - - 3(608400) 9 
33 33 _ 17 (334668) 8(402300) - 2(588289) 27 
34 34 2 (594473) 30 (384064) 2(761013) _ - 34 
35 35 - 24 (329141) 6(547757) - 1(851929) 31 
36 36 - 25 (398400) 1(645004) - 1(990025) 27 
36 2x18 . 16 (540736) 2(880884) - 18 
36 3x12 . - - 3(483025) 3 
37 37 - 11(405568) 1(762808) - - 12 

38 38 - 28 (494352) 2(643897) - 30 
39 39 - 13(491584) _ - - 13 

40 40 - 21(504600) 1(947348) 5 (511225) 27 
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|hF] CIF ||C4| D4 J S4 I A41 V4 11 E I 
40 2x2x10 - - - 1(906304) 1 
40 2x20 - 11 (549000) - - 1 (906304) 12 

41 41 - 9 (520489) 2 (727656) - - 11 
42 42 - 11 (639561) 1 (818901) 1 (570025) 13 
43 43 - 9 (684025) 1 (650264) _ - 10 

44 44 - 12 (424000) - 12 

44 2x22 - 2 (861025) - - _ 2 
45 45 - 2 (901184) - 2 

46 46 - 10 (589849) - - _ 10 
47 47 - 3 (783025) _ - - 3 
48 48 - 7 (673081) - _ 2 (577600) 9 
48 2x24 - 1 (902025) - - 1(853776) 2 
49 49 - 3 (774208) - - - 3 

50 50 - 5 (812304) - - - 5 

50 5x10 - - - - 1(678976) 1 

51 51 - 4 (654373) - - 4 

52 52 - 1 (964368) - _ - 1 

52 2x26 - 4 (871488) - _ _ 4 

53 53 - 1(833044) - - 1 
55 55 1 (920337) - - 1 

56 56 1 (958528) - - 1 (874225) 2 
57 57 1 (929713) - - - 1 

60 60 1 (849660) - - -- 1 

60 2x30 - - - 1(846400) _ 1 
64 64 1 (654400) - - - 1 
64 8x8 - 1 (790920) - - 1 
68 68 - 1 (769600) - - . 1 
70 70 - - 1 (958616) - - 

IZE I _______ JJ54 1 36238 1 44122 1 90J 818 JJ 81322 

All computations were done on Apollo workstations DN3000 and DN4500 
(CPU Motorola 68020/68030). We used the number-theoretic program library 
KANT, which is developed in Dusseldorf [9]. All data can be obtained from the 
authors. 
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